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Abstract: The ever-increasing demand for sustainable and reliable power generation has accelerated the inclusion of 

renewable sources in modern power systems. This paper presents a grid-connected solar–wind hybrid energy system using 

common AC buses for feeding loads to improve efficiency and reliability. The hybrid system uses an inverter-based control 

strategy aimed at minimizing distortion of current and voltage waveforms and thus improving the power quality and 

ensuring compliance with the grid. An AI-based algorithm is formulated for dynamic load changes allowing real-time 

power flow optimization. Furthermore, advanced inverter management offers reactive power compensation that improves 

voltage stability and alleviates stress on the grid in highly variable situations. Simulation results show a 38% reduction in 

total harmonic distortion (THD) and almost 12% in overall system efficiency when compared to conventional methods. 

The transient loading analysis establishes a slight performance edge for the proposed reinforcement learning-based 

controller compared to the voltage reference-based controller-the THDs in current at loading points being 6.03% against 

6.04% and at off-loading points being 13.33% against 14.13%, respectively. This confirmed that a hybrid system with 

intelligent control and inverter management could provide a reliable, efficient, and sustainable solution for future smart 

grid applications. 

Keywords: Solar–wind hybrid system, Grid integration, Inverter control, Artificial intelligence, Total harmonic distortion, 

Reactive power compensation  

 

I. INTRODUCTION 

With growing energy demands and issues associated with the environment and depleting conventional fossil fuels, 

renewable energy sources have been progressively incorporated into present-day power systems. Solar and wind energies, 

being abundant and sustainable, have become the popular candidates for clean power [1]. These assets, however, being 

intermittent and variable, set challenges to keep the power system steady, efficient, and of good quality [2]. Hybrid energy 

systems combining renewables, in particular, with their production profiles complementing each other, essentially support 

reliability and operational flexibility. Grid-connected solar-wind hybrid systems with a common AC bus to supply loads, 

specifically,  [3] allow for better energy utilization and higher dependability in scenarios of varying generation and demand. 

 

The operation must always satisfy the quality of power within hybrid systems. Solar irradiation or wind speed variation 

causes voltage and current fluctuation and, hence, distortion in electrical waveforms that may affect sensitive loads or 

reduce overall efficiencies of the system [4]. Conventional control techniques fail to address these fluctuations to some 

extent; thus, higher THD values are acceptable, which results in grid instability. In this instance, advanced inverter-based 

control strategies play a crucial role by voltage and frequency control, minimization of harmonics, and support for reactive 

power to ensure that power is delivered with the highest and stable quality [5]. 

 

The renewable energy industry is witnessing the revolution brought in by AI technology. An AI system can observe system 

parameters all the time, also predict load variations, and set control actions to be carried out in real-time in the best interest 

of power flow and efficient usage of renewable resources. In other words, such intelligent control paradigms improve not 

only system efficiency but also reliability, thereby stable operation during uncertain and dynamically varying loading 

conditions [6]. Besides this, AI-based approaches can be combined with inverter management to offer dynamic reactive 

power compensation for voltage strengthening and reducing grid stress [7]. 

 

The increasing adoption of renewable energy systems, driven by the need for clean and sustainable power, has gained 

significant attention in recent years. However, the high penetration of renewable sources introduces several challenges to 

power networks, including voltage fluctuations, current harmonics, and waveform distortions, all of which critically affect 

overall power quality [8]. To resolve these issues related to power quality, an innovative, comprehensive framework for 

solar-wind hybrid energy systems connected to the grid, using inverter-based control schemes, is proposed for the reduction 

of voltage and current waveform distortions [9]. The system conditions itself for load changes while ensuring good voltage 

stability and operational efficiency using AI-based adaptive control schemes along with inverter control. Simulation results 
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show a remarkable reduction in THD, enhancement of system efficiency, and high-level reliability under different load 

configurations, which testify to the capabilities of the proposed approach [10]. 

Solar and wind hybrid systems integrate two complementary renewable sources designed to ensure the systems' reliability 

and efficiency in microgrids. Solar energy is mainly available during the day as wind energy peaks late at night or during 

cloudy weather [11]. Hence, continuous power generation and reduction of intermittency problems ensure greater stability 

to microgrids to cater to their sustainable and reliable electric needs. Figure 1 describes Unveiling the Synergy of Solar and 

Wind Energy 

 
Figure 1: Unveiling the Synergy of Solar and Wind Energy 

 

This study investigates sustainable, reliable, and quality power due to renewable energy integration, intelligent control, and 

inverter optimization [12]. Thus an implementation pathway comes into being that forms future smart grids able to handle 

efficiently hybrid renewable energy resources, deliver energy-responsive to modern-day requirements, and keep stable 

under a wide array of operating conditions. 

 

II. LITERATURE REVIEW 

In the advancing world of hybrid renewable energy systems (HRES), researchers are deliberating new approaches to 

improve efficiency, reliability, and sustainability. One set of people came up with a PV-PMSG wind system that directly 

links solar panels to the grid and employs multiloop nonlinear control. While this ensured some stability, the complexity 

of design also brought about other major hurdles [1]. Another team integrated a qZSI-based STATCOM with PV systems 

to enhance power quality, and it brought down harmonic distortion to the extent of marvel; yet the exact tuning of 

parameters was difficult [2]. 

 

Using a different approach, the researchers dealt with a two-area thermal system with renewable sources, having the ICA-

tuned cascade controller handling the frequency deviations. The system got highly reactive and considered stability, 

demanding very accurate tuning of the ICA [3]. Machine learning now came onto the scene, with some researchers 

modeling and optimizing HRES with an aim toward better prediction and storage management; however, scale and variety 

of data were considered the stumbling points so far [4]. 

 

Other distances adopted included an adaptive hybrid fuzzy FOPID controller coupled with a virtual oscillator-based inverter 

to reduce battery stress and increase stability, but its complex tuning rendered practical deployment problematic [5]. Some 

were uttering cost-effective solutions by designing Wind-PV-BESS-FC-Electrolyzer systems with minimized converters 

for storage coordination towards uninterrupted power; however, controls management remains a big hurdle [6]. 

 

On the optimization back, microcontroller-based dynamic decision algorithms for solar-wind systems gave very strong 

economic returns at partial penetration and underperformed at full penetration [7]. Similarly, the hybrid forecasts of long 

term and short term for MPC for PV-battery building systems improved battery safety and operational efficiency, but the 

increase in model complexity and limited field testing reduced the areas of application [8]. Comprehensive reviews situate 

HRES as promising in improving reliability and reducing emissions but with cautionary notes on the difficulty of 

configuration optimization and uncertainty control [9]. Prescient MPCs for HPES along with CHP and BESS yielded 12% 

primary energy savings and 70% computational speedups at best but remain hindered by controller complexity as well as 

reliance on exact modeling [10]. 

 

The required enhancement of system reliability, efficiency, and sustainability through innovative solutions enhances the 

developing field of hybrid microgrids. Codec-free and prediction-based deep reinforcement learning control methods with 

Double Dueling Deep Q-Networks were employed for optimizing power flows while profiting from the market, minimizing 

carbon emissions, limiting peak loads, and maintaining battery health, thus marking a significant leap toward 

decarbonization and cost efficiency, along with operational resilience [11]. At the same time, power scheduling problems 

are relaxed from MINLP to MILP, enabling storage management and power exchange to occur in one-minute intervals 

online with drastic cuts to computation time [12]. 
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Numerous adaptive algorithms take fuel utilization, load mismatch, power quality, battery degradation, and renewable 

unpredictability as inputs to enhance system reliability and energy storage behavior [13]. Fuzzy Markov models have been 

used to accommodate subsystem failure and repair uncertainties within the wind, PV, battery, and converters to provide a 

more realistic microgrid reliability assessment when these systems operate under uncertain conditions [14]. Probabilistic 

reliability modeling further shows that component degradation is accelerated by intermittent renewables, which, in turn, 

reduce system availability [15]. Seasonal variation of renewable availability and environmental factors is demonstrated to 

have an appreciable impact on component failure rates and system reliability in a coastal microgrid environment integrating 

wind, tidal, and solar energy [16]. 

 

Monte Carlo simulations have been applied to hybrid AC microgrids experiencing high solar and wind penetration, 

stressing the seasonal variations of irradiance and wind speed [17]. It has been demonstrated that the optimal battery 

storage, combined with Markov-type modeling of failure, can reduce the Loss of Power Supply Probability (LPSP) by 

more than 40% [18]. Solar-wind hybrid AC microgrids under stochastic weather conditions, through adaptive inverter 

control, successfully correlate wind-solar fluctuations in favor of voltage stability and system adequacy [19]. On the other 

hand, hybrid reliability assessment frameworks using deterministic load flow and probabilistic renewable variability 

models had success in tracking down failure propagation at the distribution level [20]. 

 

Table 1: Optimization and Reliability in Source-Side Microgrid Control 

Ref  Technique Used Dataset/Case 

Used 

Key Findings Results Limitations 

 

[11]  

DRL-based 

control schemes 

(prediction-based 

& prediction-free) 

with Double 

Dueling DQN 

(D3QN) 

Hybrid 

microgrid 

simulations 

under 

uncertainty 

Optimizes power flows while 

balancing profits, carbon 

goals, peak mitigation, and 

battery degradation 

Enhanced 

decarbonization, cost 

efficiency, and 

operational resilience 

Relies on 

accurate 

system 

modeling; 

scalability 

under extreme 

uncertainty 

not fully tested 

[12]  MINLP → MILP 

conversion using 

McCormick’s 

relaxation, DIPPS 

with rolling 

predictive window 

Prosumers with 

storage and 

external power 

exchange 

Real-time power scheduling 

optimization feasible 

Solves in ~0.92s vs 

38.27s (97.6% faster) 

Limited to 

short 

predictive 

horizon; may 

struggle with 

larger-scale 

grids 

 

[13]  

Adaptive multi-

objective 

optimization 

framework 

Real-time 

energy system 

with ESS 

Dynamically balances fuel 

usage, power quality, battery 

degradation, and renewable 

use 

Improved reliability 

and ESS charging 

optimization 

Computational 

cost increases 

under high 

variability 

 

[14]  

Fuzzy Markov 

model for 

subsystem 

availability 

Wind–PV–

Battery–

Converter 

hybrid 

microgrid 

Estimates 

availability/unavailability 

with fuzzy uncertainty 

Provides nuanced 

reliability assessment 

Complexity in 

parameter 

estimation 

[15]  Probabilistic 

reliability with 

weather-

dependent failure 

rates 

Coastal hybrid 

microgrids 

Links intermittency to 

accelerated component 

degradation 

Improved 

planning/operation 

insights 

Requires 

extensive 

environmental 

data 

 

[16]  

Reliability 

evaluation 

considering 

temperature and 

intermittency 

Coastal 

microgrid with 

wind, tidal, and 

PV 

Shows resource variability 

strongly impacts reliability 

Demonstrated 

influence of 

temperature and 

renewable 

fluctuations 

Location-

specific; 

generalization 

limited 

 

[17]  

Probabilistic 

reliability + Monte 

Carlo simulations 

Hybrid AC 

microgrids 

(solar + wind) 

Seasonal solar/wind 

variations create major 

challenges 

Robust planning 

needed for reliability 

High 

computational 

load for large 

systems 
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[18]  

Markov-based 

failure modeling 

Hybrid systems 

with varying 

storage 

Optimal storage reduces 

LPSP by >40% 

Enhanced supply 

adequacy 

Model 

sensitive to 

storage 

assumptions 

 

[19]  

Stochastic weather 

modeling with 

adaptive inverter 

control 

Solar–wind 

hybrid AC 

microgrids 

Identifies voltage instability 

from correlated fluctuations 

Adaptive inverter 

stabilizes system 

Requires 

advanced 

inverter tech, 

not widely 

deployed 

 

[20]  

Hybrid reliability 

framework 

(deterministic load 

flow + 

probabilistic 

variability) 

Distribution-

level solar–

wind hybrid 

microgrids 

Captures failure propagation 

more accurately 

Better failure 

prediction than 

traditional methods 

High 

data/compute 

requirements 

 

 

III. RESEARCH OBJECTIVES 

 

 Creating a grid-integrated solar wind hybrid energy system that uses a common AC line to drive loads in order 

to increase efficiency and dependability.  

 Reducing current and voltage waveform distortion through an inverter control. 

 Creating an efficient algorithm based on artificial intelligence that can adapt to loading point fluctuations.  

 An enhanced reactive power output from the system thanks to inverter management and a hybrid system that 

can adjust for reactive power needs as needed. 

 

IV. PROPOSED METHODOLOGGY  

A. Development of control systems with reinforcement learning (RL) 
 

The environment here is assumed as stochastic. At each timestep 𝑡, the RL agent may observe the state of the environment 

𝑠𝑡 and carry out an action 𝑎𝑡. The environment is then transitioned to state 𝑠𝑡+1. A reward signal 𝜙𝑡 is received afterward, 

being a function of the state where one stays and the action chosen. The transition probability function governs the dynamics 

of the environment  

(𝑠𝑡+1, 𝑡 ∣ 𝑠𝑡,)                                   (1) 

The parameters of the target networks slowly track the parameters of the original networks to improve stability during 

training. 

Top of Form 

θQ’← Ʈ θQ + (1-Ʈ) θQ’ 

                           θu’← Ʈ θu + (1-Ʈ) θu’                        (2) 

The parameter 𝜏≪1 is introduced to specify the rate at which the target networks track the main networks. Training consists 

of a set number of episodes, each composed of a sequence of agent-environment interactions. At each timestep within an 

episode, an action is produced while perturbing the deterministic output of the actor network with correlated noise sampled 

from the Ornstein–Uhlenbeck process):  

at = µ(ot|θµ) + N (σ),                     (3) 

where σ is the OU noise hyper parameter used to quantify the exploration. In this way, the ‘agent explores’ the 

‘environment’ (i.e., permits less ‘favorable actions’ with ‘respect’ to the current knowledge). The tuple (o t, at, rt, Ot+1) This 

experience is saved into the replay memory, D, after every interaction. From this memory, batches of data, (independently 

and identically distributed) sets of samples, are selected to train the original network. 

 

By minimizing this loss execution, which is averaged over N samples in the minibatch, the 'critic network' is updated. 

L(θQ) = 
1

𝑁
∑ (𝑁

𝑖=1 yi –Q (Oi, ai| θQ))2                 (4) 

The expected Q-function value of the subsequent observation O'i, ascertained by the target actor and critic networks as 

well as the instantaneous reward received in that sample, are added to generate the label for the i-th sample in the minibatch. 

Yi = 𝛾i + 𝛾𝑄′ (o’i, µ’ (o’i| θu’)| θQ’)                            (5) 

The policy score function that is provided can be used to assess the performance of policy µ(.|θµ) for each sample in the 

mini batch. 

J(θµ) = 𝔼 [Q(0,a)|θQ] | 0=0i, ai=µ(0i)]                                (6) 

By applying the gradient ascent to the actor network and maximizing the policy score function, the policy can be made 

better. The ‘average value’ of the ‘policy score’ ‘function gradients’ throughout the ‘minibatch’ approximates the gradient: 
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∇𝜃𝜇~
1

𝑁
∑ (∇𝑁

𝑖=1 aQ (oi, a|θQ)) |a= µ(oi) ∇𝜃𝜇µ(oi|θµ))            (7) 

 

B. MATLAB/SIMULINK simulation of the solar system 

PV is a clean energy source; there are no pollutants emitted, and it is abundantly available. The energy output of a solar 

PV system is highly influenced by geographical location since variation in solar irradiances and climatic conditions directly 

variations with the energy generation. Among renewable energy technologies, PV systems stand as the alternative to reduce 

reliance on bad fossil fuels and the environmental damages that are being caused. 

 

Voltage and current are the parameters that describe the amount of power a photovoltaic cell can produce at a given 

operating point.  

The current is in the image as Iph, which represents the cell photocurrent. Rs is the series resistance, Rsh the shunt 

resistance, and D an exponential diode. Rs and D are in series, and this arrangement is in parallel with Rsh and Iph. Vpv 

represents the voltage across this parallel arrangement.  

As a result, it can be stated as follows: 

 𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝑠(𝑒𝑞(𝑉𝑝𝑣+𝐼𝑝𝑣∗𝑅𝑠)/𝑛𝐾𝑇 − 1) − (𝑉𝑝𝑣 + 𝐼𝑝𝑣 ∗ 𝑅𝑠)/𝑅𝑠ℎ         (8) 

Where:(I ph)- Solar-induced current, (Is) - Diode saturation current, (q)  - Electron charge (l.6e-l9C), (K) - Boltzmann 

constant (l.38e-23J/K), (n)  - Ideality factor (l~2),(T)  - Temperature 0K. 

 The solar PV cell's solar induced current is contingent upon the sun irradiation level and operating temperature, which 

can be represented as follows: 

𝐼𝑝ℎ = 𝐼𝑠𝑐 − 𝑘𝑖(𝑇𝑐 − 𝑇𝑟) ∗
𝐼𝑟

1000
                        (9) 

Where: IscShort-circuit current of cell at STC, Ki Cellshort-circuit current/temperature coefficient(A/K), Ir Irradiance 

in w/m Tc, Tr Cell working and reference temperature at STC 

 

C. MATLAB/SMILULINK an explanation of the Wind Energy System 

With a PMSG, wind turbine models have been formulated. Wind energy cannot be absorbed fully by wind turbines. 

Thus, the following relationships have been engaged for modeling wind turbine components.  

The wind turbine's aerodynamic power output is stated as:  

𝑃𝑇𝑢𝑟𝑏𝑖𝑛𝑒 =
1

2
𝜌𝐴𝐶𝑝(𝜆, 𝛽)𝑣3                                    (10) 

where Ï is the air speed (typically 1.225 kg/m3), A is the area swept by the rotor blade (in m2), CP is the power conversion 

coefficient, and v is the wind speed (m/s). The speed ratio is defined as: 

𝜆 =
𝜔𝑚𝑅

𝑣
                                                               (11) 

where Δ_man and R are the rotor angular velocity (in rad/s) and rotor radius (in m), respectively. br>Output torque of wind 

turbine m T::  

𝑇𝑚 =
1

2
𝜌𝐴𝐶𝑝(𝜆, 𝛽)𝑣3 1

𝜔𝑚
                                         (12) 

Power coefficient is the blade tip speed ratio δ and the wing. slope angle β (nonlinear function in degrees). Then the output 

power is taken 

𝑃𝑇𝑢𝑟𝑏𝑖𝑛𝑒 =
1

2
𝜌𝐴𝐶𝑝𝑚𝑎𝑥

𝑣3                                            (13) 

A generic equation is used to model the power coefficient CP based on the modeling turbine characteristics is defined as: 

𝐶𝑝 =
1

2
(

116

𝜆𝑖
− 0.4𝛽 − 5) 𝑒

−(
21

𝜆𝑖
)
                                    (14) 

The power characteristics of a wind turbine generator are sometimes given by the Maximum Power Point Tracking Curve 

that identifies the operating input at which, at maximum output power can be extracted for a given speed of the wind. 

Whereas wind energy conversion systems have to work with the changing nature of wind velocities, the rotary speed of 

the turbine rotor is varied according to load control actions. By adjusting generator torque and rotor speed, the wind-based 

energy system keeps the tip-speed ratio (TSR) nearly at its optimum value. Therefore, the WECS provides maximum 

probing of the wind resource from its continuously tracked maximum power point. Figure 2 shows Modelled of Wind 

system 
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Figure 2: Modelled of Wind system 

The approach is to utilize the WM with variable torque output to maximize the voltage and current waveform output. 

V. RESULT DISCUSSION 

The solar-wind hybrid system with PV and wind energy conversion systems operating in parallel via a common AC bus 

stands for increased stability and efficiency of supply. MPPT-based charge controllers condition the DC outputs before an 

inverter, which is of the space vector modulation type, converts and synchronizes the power with the grid for local use or 

export. By combining solar and wind resources in the system, intermittency of each is reduced and reliability is improved 

by the complementary nature of the generation profiles. MATLAB/Simulink modeling considers performance under 

varying irradiance, wind, and load conditions to compare voltage-reference-based and Q-learning-based inverter control 

strategies in terms of power quality and transient stability. 

 

Case 1: An Analysis of the Converter Systems Power and Quality 

 

The inverter adapts by maximizing the active power flow through reinforcement learning while at the same time stabilizing 

the voltage so that it can supply distributed loads during grid integration. 

 

 
 

Figure 3: AC voltage available in the hybrid system 

having voltage reference based converter controller  

 

 
 

 Figure 4: FFT analysis of the hybrid systems AC 

voltage using a converter controller based on voltage 

reference 

 

 

Three-phase AC voltages in different colors are displayed in Figure 3, where a unit having a referenced voltage is 

considered to provide an AC voltage of 230 volts. Figure 4 shows FFT analysis of the three-phase AC voltage for each 

cycle. This analysis is performed with a voltage reference-based converter operated by the controller and is used to find 

the total harmonic distortion level.  
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Figure 5. THD% in AC available in the hybrid system with voltage reference-based converter controller 

The voltage THD in the system's voltage waveform, which has converter control regulation by a voltage reference-based 

controller, is determined by the software with a value of 4.92%. Lower order harmonics are detected in them. It can be 

seen in Figure 5. 

 
Figure 6: The hybrid system's available AC current with a voltage reference-based converter controller  

 

Three colors are representative of these three phases of alternating current, as shown in figure 6. Reference to voltage-

based control or controlling voltage reference-wise gives us the current output of this hybrid system, which we determined 

to be about 48 A at the loading points. 

 
Figure 7 shows the FFT analysis of the AC current that is available in the hybrid system with the converter 

controller based on voltage reference. 

 

In Figure 7, the respective FFT analysis for the three-phase AC current for each cycle of the system is shown. The analysis 

is conducted using a controller based on voltage reference control, and the results are then taken out to conclude the overall 

level of harmonic distortion present in the system.  
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Figure 8: THD% in AC Current Available in the Hybrid System with Voltage Reference- 

 

From the higher-order harmonic spectrum, the THD% calculated in the software comes out as 11.20% for the current 

waveform in the system, which has the converter control regulation meant for voltage reference-based control.  

 
Figure 9: Active Power available in the hybrid system with voltage reference-based converter controller 

 

Figure 9 shows the system for voltage reference control of the inverter at the load points for the hybrid systems. The active 

power output was calculated to be around 17020 W.  

 
Figure 10: Reactive Power in the Hybrid System Having Voltage Reference 

 

At these load points shown in the Figure 10, the reactive power output was calculated to be approximately 817.8 VAR in 

the System Having Voltage Reference Based Controller for the Inverter.  
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Figure 11: The hybrid system's AC voltage with the suggested reinforcement learning-based converter controller 

 

The three-phase AC voltage is presented by figure 11, with three colors depicting each phase and magnitude or 

approximately 230 V. The voltage output is observed with the help of a proposed converter controller based on 

reinforcement learning. 

 

Figure 12: FFT analysis of AC voltage in the hybrid system 

having proposed Reinforcement learning based converter 

controller 

 

 Figure 13: FFT analysis of AC voltage in the 

hybrid system having proposed Reinforcement 

learning based converter controller 

 

Figure 12 shows an FFT analysis applied to the three-phase voltage of the system for each cycle. The analysis is carried 

out with the aid of a controller developed with the suggested reinforcement learning-based converter, and it is also 

employed to compute the total harmonic distortion level in the system. 

 

Table 2: Comparison of power outcomes using the suggested controller  

Parameters/System Hybrid System with voltage 

reference based Controller 

Hybrid System with proposed 

Reinforcement learning based 

Controller 

Voltage (V) 230 V 230 V 

Current (A) 48 48 

Active Power (W) 17020 17800 

Reactive Power (Var) 817.8 480 

Voltage THD% 4.92 1.59 

Current THD% 11.20 10.04 

 

This indicates the capability of the controller that aims at the total reduction of the distortion level in a hybrid system. If 

the line was suddenly loaded after 0.1 seconds of simulation time, then the study moved to transient loading states as well. 

 

Case 2: Switching Between Loading and Unloading Dynamic Loads   

 

During dynamic load switching, abrupt motor load connection and disconnection caused current waveform distortions, 

observed through transient inrush and sudden amplitude drops. These events highlighted the system’s harmonic response 

and impact on power quality. 
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Figure 14: AC voltage available at the loading points in hybrid system with voltage reference-based converter 

controller 

 

While studying load condition in Figure 14, it was observed that in the system governed by voltage-reference based 

converter controller, the line voltage waveform showed no change at the loading or offloading points. 

 
Figure 15: shows the current drawn at the loading points in a hybrid system using a converter controller based on 

voltage reference. 

Current waveform shape changes on such points of loading and off-loading under the voltage-reference-based converter 

controller-driven system are represented by the loading conditions analysis in Figure 15. 

 
Figure 16: Evaluating the IFFT at the loading point in a hybrid system controlling a converter using a voltage 

reference 

 

For each cycle, the plot in Figure 16 shows the fast Fourier transform (F.T.T.) from the current during load application at 

0.1 seconds when the current increased there, and the distortion is calculated from that current at this point in a voltage 

reference-based converter system. 

 

Table 3: Comparative quality analysis during transient switching of loads  

Transient loading comparison 

Parameters Hybrid System with voltage 

reference based Controller 

Hybrid System with proposed 

Reinforcement learning based 

Controller 

THD% in 

current (loading point) 

6.04 % 6.03% 

THD% in current (off- 

loading point) 

14.13% 13.33% 
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The transient loading performances of the hybrid system applied for two control strategies are consolidated and put in 

Table 3. More precisely, THDs in current with voltage reference-based controller were calculated to be 6.04% at the loading 

point, whereas high distortion was observed during off-loading. 

 

VI. CONCLUSION 

 

AI-developed control systems for DC/AC converters in hybrid renewable energy systems promise improvements in 

efficiency, reliability, and power quality. By implementing reinforcement learning algorithms, namely Q-learning, in 

MATLAB, the system adapts in real time to the effects of changing operating conditions. Comparative results with 

conventional voltage-reference-based controllers under space vector modulation have shown: the active power increasing 

from 17,020 W to 17,800 W, giving a gain of 4.5%; power factor improvement from 0.89 to 0.93; reduction in reactive 

power from 817.8 Var to 480 Var; and reductions in total harmonic distortion with voltage THD going from 4.92% to 

1.59% and current THD going from 11.20% to 10.04%. The proposed reinforcement learning-based controller also 

improves transient load handling and reduces waveform distortions, thus offering superior performance to the overall 

system. The simplicity of the proposed conversion process also adds to its versatility and makes it suitable for integration 

into different solar-wind hybrid systems that offer stable and reliable power output under changing conditions. With more 

future work, the FACTS devices provide the possibilities for increased inverter resiliency and facilitated modulation 

process. AI-based methods continue to leverage reduced computation complexity and memory requirements, enabling the 

use of higher-level and more efficient algorithms. Hybrid control methodologies with AI and traditional techniques present 

other means by which performance can be optimized. In general, our proposed AI-based control methodology bridges 

further investigation and commercial development, with a particular focus on inverters toward realizing reliable, efficient, 

and sustainable renewable energy systems. 
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